
iLearn – an architectural proposal
Ian Sommerville

This is a short document that outlines a possible architecture for the iLearn DLE.
Whilst our remit is requirements rather than system design, the reality of system
engineering is that requirements and architecture are inseparable - and attempts
to do so, usually end badly.
I use the term “iLearn” in this document to refer to the set of applications and
services for learning support which will replace the current DLE. This includes
productivity tools such as Office 365 or an alternative system with comparable
functionality. The option of providing few or no applications and services
centrally, and leaving choices mostly or entirely to local decisions is not
precluded and is possible within the architecture proposed here.
The architectural proposals here are driven by 3 requirements:
1. The architecture must be supportive of incremental development and

delivery of the system
2. The architecture must allow for the inclusion of new services/applications as

they become available and for the replacement of existing services (e.g. for
contractual reasons or lack of use)

3. The architecture must support 'budget-driven' development i.e. it should be
possible to create different instantiations of the system, depending on the
budget available.

The fundamental architectural abstraction that I propose should be used is the
notion of a service. From a user-perspective, services can range from relatively
simple, single function services to much more extensive, multi-featured
services. For example, an authentication service does one thing only - it simply
allows a user to authenticate themselves with a system; a social network for
education such as Edmodo is a multi-featured service which does many different
things.
The key characteristic of a service from the point of view of the system
architecture is that it is a replaceable system component. This means that we
can identify abstract services that might be included in the iLearn system such as
a messaging service, a coursework management service, etc. without specifying
the specific applications/tools that will provide that service.
It also means that if users are unhappy with a particular instantiation of a service,
they may be able to replace this with an alternative in their own instantiation of
the system. The degree of lock-in to specific providers is limited - when a contract

runs out, a service can be replaced with another if that is the most appropriate
action to take.
By adopting a replaceable service approach, we have the ability to create a
range of different systems, depending on identified user needs and requirements.
The spectrum of systems can include:
1. A completely open system with no centralized authentication, with the only

system service being a configuration service to define the independent
application services seen by users and groups for cooperative work.

2. A “Glew-like” system with an authentication service and various
independent tools.

3. A system with a number of centralized services (authentication, storage,
etc.) that facilitate cooperative work.

4. A “system with a fixed set of tools and components.
Aside 1: What exactly is allowed here depends on the governance of the system.
I am suggesting that we should have a technical solution, which allows for
different options not proposing any particular option.
Aside 2 (for techies): A service here is an abstraction rather than an
implementation concept. I am not suggesting that the system implementation
needs to be implemented using a web-service model (although it could be).
The service model has an important implication for the overall architecture of the
system. To allow for replaceability, then each service has to manage its own data
- which can either be done within a system-provided storage service or
separately. Some data integration is possible if a shared storage service is used
but the notion of tight data integration, a common data schema for all applications
and maintaining only a single 'golden' copy of information is not possible. Whilst
there are benefits in some circumstances to a tightly integrated, database centric
system, such systems are very expensive to design (lots of up front agreement
on data schemas is required) and difficult and expensive to change. The type of
application used in education does not, in my view, seem to require such tight
integration.
I suggest that two types of service should be supported in the system:
1. Integrated services. These are services which offer an API (application

programming interface) and which can be accessed by other services
through that API. Direct service to service communication is therefore
possible. An authentication service is an example of an integrated service -
rather than use their own authentication mechanisms, an authentication
service may be called on by other services to authenticate users; similarly, if
users are already authenticated using one service, then it may pass
authentication information directly to another service via an API with no
need for the user to re-authenticate themselves. Integrated services may be

provided by different vendors and may operate on different platforms - there
is no notion that these are 'all in one place'.

2. Independent services. These are services which are simply accessed
through a browser interface and which operate independently of other
services. Information can only be shared with other services through explicit
user actions such as copy and paste; re-authentication may be required. An
example of an independent service might be Edmodo - a social network for
education.

Of course, independent services may become integrated services if this is seen
to be useful, if contractual agreement with the service provider can be agreed
and if budget is available.
Aside: There may also be the notion of 'service packages' which are themselves
integrated to some extent and which share information. So, MS Office 365 is a
service package - the package envelope rather than individual components
communicates with the authentication service and manages the 'single sign-on'
using its own mechanisms. Google Apps would be a comparable service
package and may work in the same way.

Architectural model

An architectural model for the iLearn system is shown in the diagram below.
The elements of this model are:
1. Utility services. These are services that provide functionality that may be

required by a number of other services. Authentication, authorisation and
storage are obvious examples here but there may well be other common
services that will be included. Utility services are integrated services.

2. Productivity package: This will offer services such as word processing,
spreadsheets, email, etc. Currently MS Office 365.

3. Application services: These are services that offer specific application
functionality e.g. a VLE to manage student work, a specific art package for
primary school children, etc. Application services may be integrated or
independent services and may or may not make use of the utility services in
the system. What application services should be provided initially is an
issue for the group looking at the user requirements for iLearn.

Diagram notes:
All proposed services are EXAMPLES not definitive proposals. What is actually
included is up to the people configuring the system.

I am not an ICT in Education expert so what I have identified as application
services may be inappropriate –it is up to teaching professionals what is included
here.
To allow access from multiple devices, it makes sense to use a cloud-based
storage system for user data. However, for regulatory reasons, it may be that
some application storage has to be separate and maintained in the UK. Hence
the identification of 2 storage services.
Interfacing services at the utility level are used to interface with external
applications which may provide data such as SEEMIS.

Browser-based user interface

Configuration services

Productivity package Application services

Utility services

Authentication User storage Application storage

Logging and monitoring

Word processing

Spreadsheet

MessagingEmail Video conferencing

VLESimulation

Resource finder

Search

Group management Application management Identity management

Interfacing

4. Configuration services: These are services that allow the environment to be
adapted for specific groups of users. They should provide they ability to
define and manage cooperating groups, to create user interfaces that offer
a specific set of services that is appropriate to the class of user and to limit
access to system functionality where this is appropriate to do so.
Configuration services are integrated services. The notion of a configuration
service also means that different local authority policies may be supported.

5. User-interface: A browser-based user interface to access all services. On
startup, users will see in their interface the services, documents and groups
which are appropriate for their use – e.g. a primary school child will see
something quite different form a sixth-former.

 Each service will, of course, have its own interface – there is no notion of
implementing a common look and feel interface for all services.

Meeting the requirements.

This service-oriented architecture meets the requirements identified above in the
following ways:
1. Incremental delivery. An initial set of key services can be delivered and

augmented with new services over time. The only 'essential' service is a
configuration service to define groups, applications and permissions but it is
likely that an identity management service, including authentication, would
be part of an initial delivery.

2. Inclusion of new services is supported through the notion of independent
services. When a new service is discovered, it can easily be added
and made widely available by modifying the configuration service.

3. Budget-driven development is possible because the principal effort, after
some fundamental utility services have been provided, is in converting
independent services to integrated services. The extent to which this
happens is a function of the available budget.

Glossary

Application programming interface (API). An interface specification which allows
one program to directly access the functionality of another program without going
through a user interface. Programs can therefore communicate directly without
user intervention.
architectural model. An abstract presentation of the organisation of a system.
This need not be the same as the final implementation model for the system but
is used as a means to facilitate discussion about the system organisation. A

complete description of a software architecture normally requires several different
architectural models showing different aspects of the system.
incremental development and delivery. An approach to software development
where the features of the software are not completely specified in advance but
rather where groups of features are packed as system 'increments' and these are
developed and delivered in sequence. Therefore, critical, widely-used
functionality is delivered early; less widely used functionality is included in a later
increment. This approach allows for feedback from initial increments to influence
later increments and for the system development to start without the overhead of
all stakeholders agreeing on everything that has to be included.
service: A stand-alone set of features offered by a software system and
presented as a single entity. Note that the same software system may offer
different services i.e. different sets of features.

